
Journal of Computational Physics163,118–132 (2000)

doi:10.1006/jcph.2000.6557, available online at http://www.idealibrary.com on

A Modified Parallel Tree Code for N-Body
Simulation of the Large-Scale

Structure of the Universe

U. Becciani, V. Antonuccio-Delogu, and M. Gambera

Osservatorio Astrofisico di Catania, Catania, Italy
E-mail: ube@sunct.ct.astro.it, van@sunct.ct.astro.it, mga@sunct.ct.astro.it

Received September 20, 1999; revised May 17, 2000

N-body codes for performing simulations of the origin and evolution of the large-
scale structure of the universe have improved significantly over the past decade in
terms of both the resolution achieved and the reduction of the CPU time. However,
state-of-the-art N-body codes hardly allow one to deal with particle numbers larger
than a few 107, even on the largest parallel systems. In order to allow simulations
with larger resolution, we have first reconsidered the grouping strategy as described
in J. Barnes (1990,J. Comput. Phys.87, 161) (hereafter B90) and applied it with
some modifications to our WDSH–PT (Work and Data SHaring–Parallel Tree) code
(U. Beccianiet al., 1996,Comput. Phys. Comm.99, 1). In the first part of this paper
we will give a short description of the code adopting the algorithm of J. E. Barnes and
P. Hut (1986,Nature324, 446) and in particular the memory and work distribution
strategy applied to describe thedata distributionon a CC–NUMA machine like the
CRAY–T3E system. In very large simulations (typicallyN ≥ 107), due to network
contention and the formation of clusters of galaxies, an uneven load easily verifies.
To remedy this, we have devised an automatic work redistribution mechanism which
provided a good dynamic load balance without adding significant overhead. In the
second part of the paper we describe the modification to the Barnes grouping strategy
we have devised to improve the performance of the WDSH–PT code. We will use
the property that nearby particles have similar interaction lists. This idea has been
checked in B90, where an interaction list is built which applies everywhere within a
cellCgroupcontaining a small number of particlesNcrit. B90 reuses this interaction list
for each particlep ∈ Cgroup in the cell in turn. We will assume each particlep to have
the same interaction list. We consider that the agent forceFp on a particlep can be
decomposed into two termsFp = Ffar + Fnear. The first termFfar is the same for each
particle in the cell and is generated by the interaction between a hypothetical particle
placed in the center of mass of theCgroup and the farther cells contained in the inter-
action list.Fnearis different for each particlep and is generated by the interaction be-
tweenpand the elements nearCgroup. Thus it has been possible to reduce the CPU time

118

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.

TREE CODE FOR N-BODY SIMULATION OF LSS 119

and increase the code performance. This enables us to run simulations with a large
number of particles (N ∼ 107–109) in nonprohibitive CPU times. c© 2000 Academic Press

Key Words:N-body simulations; parallel computing.

1. INTRODUCTION

N-body codes are one of the most important tools of theoretical cosmology [9] because
they offer the possibility of simulating most of the gravitational processes driving the
formation of the large-scale structure of the universe (hereafter LSS) [3, 11, 15]. These
simulations are often used to check cosmological models and to constrain the free parameters
of these models which cannot be fixed either theoretically or observationally.

The typical mass scale for gravitational instability, the Jeans mass, has a value of≈106.5

solar masses (1 solar mass≈ 1.9× 1033 g) at the recombination epoch, and it gives the
approximate size of the first objects forming by gravitational collapse at that epoch. On
the other hand, the largest structure we see in our Universe today, the “Supercluster” of
galaxies, has a mass in excess of≈1018 solar masses. Moreover, the gravitational force
has a truly long-range character, which makes it impossible to introduce reasonable upper
cutoffs in the mass range. For all these reasons, one would like to be able to perform
simulations spanning more than 12 orders of magnitude in mass, but present-day state-of-
the-art software and hardware technology does not allow simulations with more than≈109

bodies. For these reasons, the quest for increasingly efficient algorithms is still in progress.
However, the importance of making N-body simulations is clear to several authors [12, 19,
20]. During the past years N-body codes have been much improved and applied successfully
to various problems in galaxy dynamics, galaxy formation, and cosmological large structure
formation. Nevertheless, the computational expense has remained prohibitive forN > 109,
even using tree-based algorithms on the most powerful computers.

The situation is even worse for other N-body algorithms. The N-body direct evolution
method scales asO(N2), which makes it impossible to run simulations with more than
104 particles. To overcome this difficulty, and when high accuracy is required, alternative
numerical methods based on hierarchical force-computation algorithms are widely used.
The recent effort has addressed the production of new software and algorithms for the new
generation of high-performance computer systems. The ultimate target is an implementation
of the tree N-body algorithm to run simulations with higher accuracy and particle number,
decreasing the cost of the simulation in terms of CPU time and increasing performance in
terms of number of particles/second elaborated when running on MPP systems.

Among the tree algorithms designed to compute the gravitational force in N-body sys-
tems, one of the most used and powerful in modern cosmology is that by Barnes and
Hut (BH) [5]. The BH octal-tree recursive method is inherently adaptive and allows one
to achieve a higher mass resolution even if parallel implementation of this algorithm
[7, 23] suffers from a serious drawback: it can easily run into imbalance as soon as the
configuration evolves, causing performance degradation. In this paper we present a mod-
ified version of the BH algorithm in which we have introduced an enhanced grouping
strategy. We will show how this feature allows an increase in performance when we con-
sider N-body simulation with a large number of particles (N ≥ 106). The code we present
incorporates fully periodic boundary conditions using the Ewald method, without the use
of fast Fourier transform techniques [16].

120 BECCIANI, ANTONUCCIO-DELOGU, AND GAMBERA

In Section 2 we give a brief description of our N-body parallel code, based on the BH tree
algorithm, and the dynamic load balance (DLB) policy adopted. In Section 3 we describe
our enhanced grouping strategy. In Section 4 we show the results of our tests and in Section 5
we report our conclusions.

2. THE PARALLEL CODE

Since the publication of the monograph by Hockney and Eastwood in 1981 [17], a new
class of particle simulation methods [2, 5, 18, 21, 22] has emerged as an alternative to
particle–particle (PP) [1, 14, 25], particle–mesh (PM) (for a review of this method see
[10]), and particle–particle–particle–mesh (P3M) [13] methods. These new methods are
characterized by the particles being arranged into a hierarchy of clusters, which span the full
range of length scales from the minimum interparticle spacing up to the diameter of the
entire system. These methods are usually known astree methodsor tree codesbecause of
the data structures used. With these new methods, the short-range force on a particlep is
calculated as a direct sum over nearby particles. Remote bodies are organized into groups
which become progressively larger with the distance from the particle; then a multipole
expansion of the potential of each cluster about its center of mass is performed. The long-
range contribution to the acceleration is given by the sum of the particle–cluster interactions.

2.1. The Barnes–Hut Tree Algorithm

The BH algorithm works using a hierarchy of cubes arranged in an octal-tree structure;
that is, each node in the tree has eight siblings and each node represents a physical volume
of the space. The total mass of all particles within a given volume and their centers of mass
are stored at the corresponding node. Thus, the system is first surrounded by a single cell
(cube) encompassing all the particles. This main cell (calledroot) is subdivided into eight
subcells of equal volume, each containing its own subset of particles. Each subcell in turn
is subdivided into eight new subcells and so on. This procedure is repeated until each cell
at the lowest level contains only one particle.

The force on any givenp is then the sum of the forces by the nearby particles plus the
force by the distant cells whose mass distributions are approximated by multipole series
truncated typically at the quadrupole order [15]. The criterion for determining whether a
cell is sufficiently distant for a multipole force evaluation (that is, for approximating the
cell as a multipole) is based on an opening angle parameterθ given by

Cl

d
≤ θ, (1)

whereCl is the size of the cell andd is the distance ofp from the center of mass of the
cell. Smaller values ofθ lead to more cell opening and more accurate forces (forθ = 1 we
have an error lower than 1% on the accelerations [15]). The equations of the dynamics are
solved using the Leapfrog integrator.

2.2. Data Distribution and DLB

In our parallel implementation of the BH tree algorithm, using the PGHPF/CRAFT
(an implementation of High Performance Fortran by the Portland Group) programming

TREE CODE FOR N-BODY SIMULATION OF LSS 121

environment for the Cray T3E system, we have exploited both the Data Sharing and the
Work Sharing programming models. The flexibility of the PGHPF/CRAFT environment
allows one to mix these two modes in order to gain the maximum efficiency and speed-up.
We can distinguish two main phases in our code structure: the Treeformation (TF) and the
Forcecompute (FC). A data distribution in contiguous blocks

!HPF$ DISTRIBUTE PARTICLEATTRIBUTE(BLOCK,∗)

and alternatively, a fine grain distribution

!HPF$ DISTRIBUTE TREEATTRIBUTE(CYCLIC,∗)

were adopted to distribute the particle data properties and the tree data properties. The !HPF$
DISTRIBUTE directive of the PGHPF/CRAFT compiler allows us to consider an array
like PARTICLE ATTRIBUTE (or TREEATTRIBUTE) as a unique large array, accessible
from all the processors, the array being physically distributed in the local memory of all the
processors. We used two different sets of initial conditions, namely uniform and clustered
distributions having 2 million particles each, and tests were carried out using from 16 to
128 PEs. Our results show that higher code performances are obtained using a fine grain
tree data distribution and a coarse grain bodies data distribution. A detailed description can
be found in [7]. The static array distribution, fixed as described above, allows each PE to
cooperate during the TF phase by using principally the DO INDEPENDENT structure of
PGHPF that is a synchronous mechanism, and then to execute the FC phase in asynchronous
mode. To minimize the communication overhead, each PE executes the FC phase mainly on
the local residing bodies. The BLOCK distribution arranges bodies with the nearest logical
number (near in the space) in the same PE local memory, or in the nearest PEs. Using the
above mentioned data distribution, each PE has a block of closed bodies in the local memory
(N p= Nbod/N$PEs, whereN$PEsis the number of processors used for the simulation); in
an initial condition with a uniform distribution, the PEs having extreme numeration in the
pool of available PEs have a lower load at each time-step. The load imbalance is enhanced
when a clustered situation occurs during the system evolution. The PEs having bodies in
clustered regions have a greater workload since the load of the FC phase increases as the
mass density grows. The technique we follow to perform a load redistribution among the
PEs is to assign each PE to execute this phaseonly for a fixed portion of the bodies residing
in the local memoryNBlp given by

NBlp = (Nbod/N$PEs)Plp, (2)

wherePlp = const. (0≤ Plp ≤ 1).
The FC phase for all the remaining bodies

Nf = N$PEs(Nbod/N$PEs)(1− Plp) (3)

is executed by all the PEs that have concluded the FC phase for the assignedNBlp bodies.
No correlation is considered between the PE memory location of the body belonging to the
Nf set and the PE that computes the FC phase on it. The results imply that it is possible to
fix a Plp value that allows the best code performances. Data already presented in [8] show
that it is convenient to fix thePlp value near 0.25, which is the value that maximizes the
load balance for N-body simulations of the LSS both in uniform and clustered situation.

122 BECCIANI, ANTONUCCIO-DELOGU, AND GAMBERA

3. GROUPING

Our work and data sharing–parallel tree (WDSH–PT) code is principally aimed at run-
ning LSS cosmological simulations with a number of particles as high as possible using
supercomputers such as Cray T3E systems. In order to increase the code efficiency, we
adopt initially the grouping method proposed by Barnes [4] and introduce a modified im-
plementation of his grouping policy yielding very high gains in the code performances with
the same accuracy.

3.1. B90 Grouping

To compute the force on a body, the BH algorithm needs to build an interaction list (IL)
for each particlep. Starting from the root cell, a tree inspection is done and the opening
angle parameterθ is used to evaluate whether a cell must be opened or closed as mentioned
above. If a cell has dimensionCl and distanced from the particlep so that Eq. (1) is verified,
the cell is closed, it is added to the IL, and its subcells are not investigated further. Otherwise
the cell is opened and its subcells are investigated in the same way. Bodies belonging to an
opened cell are added to the IL.

Next, the force on the body is computed using the monopole and quadrupole momenta
for all the cells in the list.

BH timing. The tree inspection phase represents a sizeable task to compute the force
because the cell opening criterion is applied many times for each particle. The CPU time
To to compute the force in a time-step for all theN particles is

To = N〈Tl 〉 + N〈Tf 〉, (4)

where〈Tl 〉 is the average time to build an IL and〈Tf 〉 is the average time to compute the
force on each particle using the interaction list.

B90 timing. The basic idea of B90 was to build a unique interaction list that allows the
force for agroupof particles inside a region; i.e., a cellCgroup of the tree (grouping cell), to
be computed reducing the number of tree inspections to build the ILs. B90 builds an IL that
applies everywhere withinCgroup and reuses this IL for each particlep ∈ Cgroup in turn. In
this way it is possible to reduce the tree inspection phase. The CPU timeTg for B90 may
be written as

Tg = Ngc〈Tgl〉 + N〈Tg f 〉, (5)

where

• Ngc is the number of grouping cells (assuming that each body is inside a group region);
• 〈Tgl〉 is the average time to build an interaction list for a group;
• 〈Tg f 〉 is the average time to compute the force on a particle using the list formed for

the group.

In the following paragraphs we will compare theTg time with theTo time considering
the generic caseθ = 0.8. We notice that different values ofθ give similar results, as shown
by the accompanying figures.

TREE CODE FOR N-BODY SIMULATION OF LSS 123

FIG. 1. Interaction list formation in BH code.

B90 opening criterion. The original BH algorithm adopts an opening criterionθBH,
based on the distance between the position of thep particle and the center of mass of the
remote cells, the IL length (L IL) being proportional to(θ3

BH)
−1

log N. In order to have the
same accuracy as the original algorithm, the interaction list of the grouping cell is formed
using Eq. (1) but now thed term is computed in terms of the distance from the center of
mass of an inspected cell and the edge of the grouping cell, as shown in Fig. 1 (dB90 is
used instead ofdBH). This implies that the IL formed using the grouping cell contains more
elements than the IL formed by applying the original BH algorithm.

B90 interaction list increment.The B90 adopts an opening criterion (θB90) based on the
distance between the edge ofCgroup and the center of mass of the remote cells. In this case
the ILg length will be proportional toθ3−1

B90 log N. Moreover, the B90 criterion usesθB90

numerically equal toθBH when using the original BH algorithm. We found experimentally
the relation betweenθB90 andθBH, using 2 million particles in a uniform distribution (see
Fig. 2): this relation agrees with data in Salmon [23]. A typical value used as opening
criterion to run simulations for the LSS isθBH = 0.8. Consequently we considerθB90 = 0.8,
which, in terms of IL length increment, corresponds to running a simulation withθBH = 0.6.

B90 timing vs BH timing. Figs. 3 and 4 show the relationship〈Tgl〉 − 〈Tl 〉 and〈Tg f 〉 −
〈Tf 〉with θ ranging between 0.4 and 1.2. Considering〈Tgl〉 = 1.3〈Tl 〉 and〈Tg f 〉 = 2.2〈Tf 〉
with θ = 0.8, Eq. (5) may be rewritten using the above relations as follows:

Tg = 1.3
N

〈Ngp〉 〈Tl 〉 + 2.2N〈Tf 〉, (6)

where N
〈Ngp〉 = Ngc, and〈Ngp〉 is the average number of particles in a grouping cell.

For a large number of systems and in particular for our WDSH-PT code running on the
T3E system,〈Tf 〉 ranges from∼1.2〈Tl 〉 to∼1.5〈Tl 〉 atθ = 0.8. Considering these figures,
we obtain from Eqs. (4) and (6), respectively,

To = 2.2N〈Tl 〉 (7)

and

Tg = 2.2N〈Tl 〉
(

1.3

2.2〈Ngp〉 + 1.2

)
(8)

and thenTg > To.

124 BECCIANI, ANTONUCCIO-DELOGU, AND GAMBERA

FIG. 2. Interaction list average length for BH and B90.

A real gain could be obtained using B90 if the CPU time spent to form the interaction
list were longer than the phase to compute the force on the particle. The results reported in
[4] demonstrate that if〈Tl 〉 À 〈Tf 〉 the code performance is between two and three times
faster of the BH algorithm, and a good choice for theNcrit value is about 32 [12].

3.2. The Modified Grouping Strategy for LSS Simulations

We will now describe the modification we introduce in the 1999 version of our WDSH–
PT code (WD99) to increase performance even if〈Tl 〉 ≤ 〈Tf 〉. The basic idea is to assign
the same ILg to each particle within a cellCgroup, containing a maximum ofNcrit particles.

We will not use the B90 criterion to build the interaction list. Instead, we will use the same
θBH criterion used in the original BH algorithm. This criterion is applied to a hypothetical
particle placed in the center of mass of theCgroup, hereafter VB (Virtual Body) (Fig. 5).
Moreover, we consider the ILg as formed by two parts given by

IL g = IL far+ ILnear, (9)

IL far and ILnearbeing two subsets of the interaction list. An element is included in one of the

TREE CODE FOR N-BODY SIMULATION OF LSS 125

FIG. 3. Measured〈Tl 〉 and〈Tgl〉 using WDSH–PT code in a Cray T3E 1200 system.

two subsets, using the following Sphere criterion for all the elements that satisfy Eq. (1).

DefineSphereradius= 3
Cellsize(Cgroup)

√
3

2

If Distance(ILg(element),VB) > Sphereradius

Add element to ILfar

Else

Add element to ILnear

Endif

Moreover allp ∈ Cgroup are included in ILnear.
Using the two subsets it is possible to compute the forceFp on a particlep ∈ Cgroup as

the sum of two components,

Fp = Ffar+ Fnear, (10)

126 BECCIANI, ANTONUCCIO-DELOGU, AND GAMBERA

FIG. 4. Measured〈Tf 〉 and〈Tg f 〉 using WDSH–PT code in a Cray T3E 1200 system.

whereFfar is a force component due to the elements listed in ILfar andFnear is the force
component due to the elements in ILnear. We assume the componentFfar to be the same for
each particlep ∈ Cgroupand compute it considering the gravitational interaction between the
VB and only the elements listed inILfar, while theFnearcomponent is computed separately
for eachp particle by the direct interaction with the elements listed in ILnear.

Moreover,Fnearcontains a restricted number of elements in comparison with theFfar list,
so we expect a net gain in performance even ifTl ≤ Tf . The gain that is possible depends
on several parameters (Ncrit, the size of theCgroup, and theSphere radius), whose ranges of
variation are constrained by the maximum allowed value of the overall error of the method,
as we will describe in the following sections.

3.3. Errors Analysis and Performance Considerations

Before showing the performance of our WD99 procedure in an N-body simulation of the
large scale structure of the Universe, it is important that we perform an error analysis of the
procedure itself. Considering that the cumulative error, when simulations for the LSS studies
are run using the original BH algorithm, is lower than 1% [6], fixing the opening criterion

TREE CODE FOR N-BODY SIMULATION OF LSS 127

FIG. 5. IL g formation using the Sphere criterion.

θ = 1, we will give some constraint concerning the size ofCgroup, the Ncrit value, and
theSphere radiusneeded to have negligible cumulative error. The following sub-sections
discuss the two main sources of error.

3.3.1. The Differences in the Interaction List

The first error source is that WD99 uses the Sphere criterion and the VB to create
an interaction list ILg ≡ ILVB and WD99 applies the ILVB to all bodiesp ∈ Cgroup. This
approximation could introduce an error in the force value on thep particle if the ILp, created
using the original BH algorithm, and the ILVB have a difference in the elements greater then
1%. As we found with our tests, in order to decrease this difference it is necessary to
limit the size ofCgroup that is equivalent to fixing acritical level of the tree structure: cells
above the critical level cannot form a grouping cell. The user has to fix the critical level
considering the density of local bodies in the box where bodies are arranged: the critical level
must be chosen in such a way as to make the difference between ILp and ILVB negligible
(no more than 1% of the elements). It seems reasonable for a LSS simulation in a 50 Mpc
box with more than 2 million particles to fix the critical level as the sixth level of the tree.
The next section shows in detail the obtained results. In any case, the cumulative error is
very small considering the increase in accuracy compared with the original BH algorithm,
due to the inclusion of allp ∈ Cgroup in the interaction list.

3.3.2. Approximation of the Force Component

The second error source is due to the assignment ofFfar, computed for the VB, to each
p ∈ Cgroup. We found that the Sphere criterion allows us to reduce this error to values much

128 BECCIANI, ANTONUCCIO-DELOGU, AND GAMBERA

lower than 0.01% forN ≥ 106 if the dimension of theCgroup cell is fixed with the critical
level as mentioned above, and theSphere radiusis three times the radius of the sphere
enclosing theCgroup cell (Fig. 5).

Another important constraint to be fixed is the value ofNcrit. All the elementsp ∈ Cgroup

are listed in theILnearlist and there is a direct body–body interaction among theNgp (Ngp ≤
Ncrit) elements forming the group. This introduces a termO(NgpNp) in the algorithm
complexity. In order to avoid a decrease of the code efficiency and to maintain a good code
accuracy, as with the original BH algorithm, it seems reasonable, running LSS simulation
with more than 1 million particles, to maintainNcrit ≤ 32. We adopted, in our runs, a safe
valueNcrit = 16 even if we obtained good results withNcrit = 32.

In the next section we show the errors obtained using the above-mentioned constraints
when applying the WD99 to LSS simulation with both uniform and clustered distributions.

4. TESTS AND RESULTS

We carried out many tests to estimate the error introduced in the WD99 and obtained
increased performances using several values ofNcrit. Therefore, this section is subdivided as
follows: first we test whether our algorithm increases the average length of the interaction
list, then we measure the resulting percentage error, and we conclude with an overall
performance analysis. As a test case we ran a simulation using 2 million particles for
LSS in a cubic region of 50 Mpc, starting from a homogeneous initial condition (redshift
Z = 50) and reaching a clustered configuration (redshiftZ = 0). We used an opening angle
parameterθ ranging from 0.8 to 1.2. Our tests were executed on a Cray T3E system and
the results will be shown in the following sections.

4.1. Measuring the Interaction List Length

The aim of this first test is to verify that the WD99 algorithm does not introduce a
significant computational cost when the force for a generic particle is computed. This
measurement is substantially performed on the average length of the IL we form adopting
our code. Fig. 6 reports the result we obtain when the simulation evolves at redshiftZ = 50.
Tests were executed for several values of redshift, but the differences between BH and our
algorithm was computed only at the end of the run. The curves were obtained by fixing
Ncrit = 32 and varying the critical level from 5 to 8. In all cases the differences we obtained
are negligible, which means that the computed IL for the VB (with the adopted Sphere
criterion) is about equal to the IL we obtain for a generic particle with the original BH
algorithm. The first important result is that WD99 does not produce any increment in the
IL length and consequently〈Tl 〉 = 〈Tgl〉.

4.2. Error Measurement

We carry out this measurement in two phases. First we run a single time-step of the
2-million-particle simulation at redshiftZ = 50. We compare the values we obtain running
the BH original algorithm and the WD99. As a reference case, we adopt the critical level
equal to 6.

A similar comparison is made atZ = 0 and the BH and WD99 histograms of the forces
of each component are compared. The comparison shows a negligible difference in the

TREE CODE FOR N-BODY SIMULATION OF LSS 129

FIG. 6. Measurement of the average Interaction List length running the original BH code and our WD99
using critical levels from 5 to 8.

force distribution in a single time-step, at least an order of magnitude less than the error of
the original BH algorithm.

The second measurement is made analysing an entire system evolution. We start with
the initial condition of 2 million particles with redshiftZ = 50,1t = 0.001,θ = 0.8, and
particle mass about 1.655× 1010 solar masses. The system evolution is carried out up to
redshift Z = 0. The evolution is executed with the original BH algorithm and with the
WD99 code. As reference case, we adopt the critical level equal to 6. We measure the
absolute errorε in the position of particles and in the velocities of particles in the mean
square sense,

εpos= 1

N

√√√√ N∑
i=1

(XBH − XWD99)2+ (YBH − YWD99)2+ (ZBH − ZWD99)2 (11)

and

εvel = 1

N

√√√√ N∑
i=1

(V xBH − V xWD99)2+ (V yBH − V yWD99)2+ (V zBH − V zWD99)2. (12)

130 BECCIANI, ANTONUCCIO-DELOGU, AND GAMBERA

The study of the final evolution is described in the next sub-section. Here we give the
measured value at the end of the simulation:εpos= 0.003 andεvel = 0.01.

Similar values are measured when running simulations with more than 2 million particles
and with a critical level equal to 6. The obtainedε values lead us to conclude that the WD99
procedure does not introduce significant errors in comparison with the BH algorithm.

4.2.1. Simulation Analysis

The final stages obtained running simulations with the BH algorithm and the WD99 code
are very similar. The two-point correlation function is defined as

ξ(r) = Nq

〈ρ〉NcV
− 1, (13)

Nq being the number of pairs of particles with separations betweenr andr +1r , V the
volume considered,Nc the particle number taken as centres, and〈ρ〉 the mean particle
density. We calculate this function at redshiftZ = 0 for WD99 and BH algorithms. The
values we obtain are perfectly equal, and the substructures we form (number and size) are
identical.

FIG. 7. A 2 million particles simulation atθ = 0.8: BH algorithm and WD99 procedure performances. A
critical level equal to 7 is fixed, and the measurements are performed for uniform (Z = 50) and clustered (Z = 0)
system conditions. They scale measures the number of particles/second computed.

TREE CODE FOR N-BODY SIMULATION OF LSS 131

4.3. WD99 Performances

To conclude our WD99 description, we report the performances measured for the WD99
code (Fig. 7) (including the boundary periodic conditions using the Ewald method [16])
and the performances of the original BH algorithm. The measured performances lead us
to the conclusion that when the system evolution is clustered (Z = 0) the WD99 does not
decrease the performance as the BH algorithm. This effect is due to the nature of the WD99
algorithm, which has a structure that increases the efficiency when clusters of particles
are well closed. This important effect allows us to run simulations with very clustered
systems, obtaining very good performance and negligible errors. Moreover, the efficiency
of the WD99 increases by a factor of up to five at the redshiftZ = 0. The gain is enhanced
when bigger simulations are run: a recent simulation with 16 million particles performed
on the Cray T3E system using WD99 showed an increase in performance by a factor of
7 at the redshiftZ = 0. We note that the gain obtained, in comparison with that obtained
by the original BH algorithm, is greater using a lower critical level (5 or 6). The gain is
incremented using a Sphere criterion withSphere radiuslower than the value we consider,
having only a small increment in the global error.

5. CONCLUSIONS AND FUTURE

The code WD99 is mainly used for LSS studies, but it could be tested and used for
other applications where accuracy not higher than 1% is necessary. Considering the high
performances we obtained, the WD99 method may be very successfully applied when
clustered configurations such as galaxies or clusters of galaxies have to be studied. The new
approach could be applied also to other fields of physics where collisionless systems are to
be simulated, as in plasma and hydrodynamic studies.

The code is written in Fortran 90 with PGHPF/CRAFT, but the latest version (written in
F90 and C languages) uses the one-side communication library SHMEM, allowing it to run
on the ORIGIN 2000 systems. A new version will be implemented using dynamical array
allocation, and we are studying the implementation of the parallel out-of-core [24], moving
data in the disk. This version will be developed for a CC-NUMA machine with MPI-2. We
plan to have a freely available version of WD99 in October 2000.

ACKNOWLEDGMENTS

All the tests were carried out using the CRAY T3E 1200/256 machine at the CINECA (Casalecchio di Reno
(BO), Italy), a 256 PE system, using the financial support of the Italian Consortium CNAA (Consorzio Nazionale
per l’Astronomia e l’Astrofisica). We thank Dr. G. Erbacci of CINECA and Dr. A. F. Lanza of Catania Astrophysical
Observatory for their useful help.

REFERENCES

1. S. J. Aarseth,Astrophys. Space Sci. 14, 118 (1971).

2. A. W. Appel,SIAM J. Sci. Stat. Comput. 6, 85 (1985).

3. J. Barnes, inUse of Supercomputers in Stellar Dynamics, edited by P. Hut and S. McMillan (Springer-Verlag,
Berlin, 1986), p. 175.

4. J. Barnes,J. Comput. Phys. 87, 161 (1990).

5. J. E. Barnes and P. Hut,Nature324, 446 (1986).

132 BECCIANI, ANTONUCCIO-DELOGU, AND GAMBERA

6. J. E. Barnes and P. Hut,Astrophys. J. Suppl. 70, 389 (1989).

7. U. Becciani, V. Antonuccio-Delogu, and A. Pagliaro,Comput. Phys. Commun. 99, 1 (1996).

8. U. Becciani, R. Ansaloni, V. Antonuccio-Delogu, G. Erbacci, M. Gambera, and A. Pagliaro,Comput. Phys.
Commun. 106, 1 (1997).

9. E. Bertschinger and J. M. Gelb,Comput. Phys. 5, 164 (1991).

10. C. K. Birdsall and A. B. Langdon,Plasma Physics via Computer Simulation(McGraw–Hill International,
New York, 1985).

11. J. Dubinski, M.Sc. thesis (University of Toronto, 1988).

12. J. Dubinski,New Astron. 133, 1 (1996).

13. J. W. Eastwood and R. W. Hockney,J. Comput. Phys. 16, 342 (1974).

14. M. Hènon,Ann. d’Astrophys.27, 83 (1964).

15. L. Hernquist,Astrophys. J. Suppl. 64, 715 (1987).

16. L. Hernquist, F. R. Bouchet, and Y. Suto,Astrophys. J. Suppl. 75, 231 (1991).

17. R. W. Hockney and J. W. Eastwood,Computer Simulation Using Particles(Mcgraw–Hill International, New
York, 1981).

18. J. G. Jernigan, inIAU Symposium 113, Dynamics of Star Clusters, edited by J. Goodman and P. Hut (Reidel,
Dordrecht, 1985), p. 275.

19. A. Kravtsov, A. A. Klypin, and A. M. Khokhlov,Astrophys. J. Suppl. 111, 73 (1997).

20. B. Kuhlman, A. L. Melott, and S. F. Shandarin,Astrophys. J. Lett. 470, L41 (1996).

21. D. Porter, Ph.D. thesis (University of California, Berkeley, 1985).

22. W. H. Press, inUse of Supercomputers in Stellar Dynamics, edited by P. Hut and S. McMillan (Springer-Verlag,
Berlin, 1986), p. 184.

23. J. Salmon, Ph.D. thesis (California Institute of Technology, 1990).

24. J. Salmon and M. S. Warren, inProc. of the Eight Conf. on Parallel Processing for Scientific Computing(Soc.
for Industr. & Appl. Math. Philadelphia, 1997).

25. S. Von Hoerner,Z. Astrophys. 50, 184 (1960).

	1. INTRODUCTION
	2. THE PARALLEL CODE
	3. GROUPING
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	4. TESTS AND RESULTS
	FIG. 6.
	FIG. 7.

	5. CONCLUSIONS AND FUTURE
	ACKNOWLEDGMENTS
	REFERENCES

